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Lattice Gases and Exactly Solvable Models 

Brosl Hasslacher I and David A. Meyer 2 

We detail the construction of a family of lattice gas automata based on a model 
of 't Hooft, proceeding by use of symmetry principles to define first the 
kinematics of the model and then the dynamics. A spurious conserved quantity 
appears; we use it to effect a radical transformation of the model into one whose 
spacetime configurations are equivalent to the two-dimensional states of an 
exactly solvable statistical mechanics model, the symmetric eight-vertex model 
with parameters restricted to a disorder variety. We comment on the implica- 
tions of this identification for the original lattice gas. 
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1. I N T R O D U C T I O N  

Lattice gas automata bear much the same relationship to the study of non- 
linear dynamics that statistical mechanics models do to the study of equi- 
librium thermodynamics. There are historical differences, of course, many 
stemming from the ubiquity of computers and the consequent temptation 
to simulation during this era in which lattice gas automata have come to 
prominence. Structurally, however, the analogy is sound: in each case we 
have a discrete model of a (macroscopically) continuous physical system 
and it is primarily as a model of this physical system that the discrete 
model is of interest. One has, for example, the Ising model for bulk 
magnetization (1) and the eponymous ice model (z) on the one hand, and 
the F H P  model for fluid flow (3'4/and the various lattice gas automata for 
diffusion processes (5) on the other. 
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While there are other fascinating aspects of statistical mechanics 
models and lattice gas automata--as  purely mathematical problems, as 
realizations of issues in theoretical computer science, as testing grounds for 
massively parallel computation, and as models potentially realizable at the 
level of device physics--it is doubtful that either would have attracted/ 
attract so much attention were the models not so physically successful. The 
Ising model, for example, predicts critical exponents extremely well (1) and 
lattice gas automata models for fluid flow have successfully simulated as 
diverse phenomena as nonlaminar flow past an obstacle in three dimen- 
sions (6) and two-phase flow through a porous medium. (7) 

The successes of lattice gas automata are particularly remarkable given 
the incompleteness of current theoretical understanding. The dominant 
question, of course, is how to design a lattice gas automaton to model a 
given physical system/collection of partial differential equations--the 
inverse compiler problem in the language of theoretical computer science. 
There are heuristics for this problem, based largely on symmetry principles, 
but no general algorithm. (8) Part of the difficulty is that given a lattice gas 
automaton model, even the powerful machinery of kinetic theory-- the  
Boltzmann transport equation, the Chapman-Enskog expansion, etc.(9)--is 
insufficient to prove that a macrodynamics governed by a particular system 
of partial differential equations arises. Various assumptions, such as the 
existence of a local thermodynamic equilibrium, and approximations, such 
as the truncation of the asymptotic series in the Chapman-Enskog expan- 
sion, are commonly made. (~'1~ One would like to understand to what 
extent these assumptions and approximations are justified. Although in 
many cases they seem to be, there are also phenomena, such as 
extraneous/spurious conserved quantities (4) and the very finiteness of the 
phase space, which suggest otherwise. These observations, too, should be 
understood. 

The goal of this paper is to explain an approach toward answering 
some of these questions in the case of a particular model. It is based on the 
fact that for some models the analogy between lattice gas automata and 
statistical mechanics models is actually an equivalence. That is, the 
spacetime configurations of an n-dimensional lattice gas automaton are the 
( n +  1)-dimensional states of a statistical mechanics model. ~11) Also, we 
recall that the statistical mechanics models which provide the most 
theoretical insight into equilibrium thermodynamics are those which are 
exactly solvable, i.e., those for which the partition function or the free 
energy can be evaluated in closed form in the thermodynamic limit. ~12) 
Wi th  these considerations in mind, in Sections 2 and 4 we detail the con- 
struction of a family of lattice gas automata based on a model of 't Hooft 
for a system with discrete local coordinate invariance. (~3) In Section 3 we 
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note the existence of spurious conservation laws in this model and are 
motivated by this observation to transform it into one which, in Section 5, 
we show is equivalent to a statistical mechanics model. Moreover, in 
Section 6 we find that this model is exactly solvable. Finally, in Section 7, 
we consider the consequences of this identification, indicating how they 
may answer some of the questions raised in the previous paragraph. 

2. K I N E M A T I C S  

The approach we outlined in the introduction requires a lattice gas 
automaton which is equivalent to a statistical mechanics model. To con- 
struct such a model, we will impose a collection of constraints forcing this 
equivalence; to do so, we will need to view the model from a somewhat 
unusual spacetime perspective. For  this reason, 't Hooft's model for two- 
dimensional spacetime with discrete local coordinate invariance is a natural 
inspiration. In an effort to clarify which features of  the lattice gas 
automaton are the consequences of which constraints, we will proceed as 
systematically as possible: in this section we set the kinematics of the 
model; in the next we explore the effect of requiring that the dynamics be 
local; and in Section 4 we construct the possible dynamics consistent with 
the imposed constraints. The exposition in this section and Section 4 is 
strongly influenced by 't Hooft's paper. (13) 

With the exception of some quite recent, fascinating results in three 
dimensions, (14~ almost all solvable statistical mechanics models are two 
dimensional. The underlying spatial lattice of the dynamical model, then, 
should be one dimensional, isomorphic to either Z or ZN (the integers or 
the integers rood N) when we choose to avoid imposing boundary condi- 
tions at a wall. Time is also discrete, the nodes of the spatial lattice being 
updated simultaneously at discrete intervals. 

Guided by the experience of field theory, we shall require the model to 
have parity (P) and charge-conjugation/time-reversal (CT) symmetry. For  
a one-dimensional lattice gas, P implies the existence of both left- and 
right-moving particles. To impose CT, we choose to have a gas with two 
types of particles: A and its CT dual, .d. We could choose to use a particle 
which was self-dual, of course, but this choice will allow more structure in 
the model. 

Thus, at its most fundamental level, the kinematics of this model, com- 
prises a one-dimensional lattice on which two types of particles, A and .d, 
propagate one step to the left or right in discrete time intervals. (Although 
we could choose Ivl > 1, it will be clear after the next section that doing 
so would make no significant difference; multiple velocities, of course, 
would be a nontrivial generalization.) We further impose one additional 

822/68/3 -4-16 
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constraint: an exclusion principle mandating that there be at most one left- 
moving particle and at most one right-moving particle on a node at any 
time. Empty nodes are allowed by this exclusion principle; the configura- 
tion space is clearly (32) ~ on Z and (32)  N o n  Z u.  

3. S P U R I O U S  C O N S E R V A T I O N  LAWS 

In the previous section we imposed discreteness, one-dimensionality, 
symmetry under P and CT, as well as an exclusion principle, to fix the 
kinematics of the lattice gas automaton we are constructing. Without yet 
specifying the dynamics, requiring locality of interactions already has 
significant consequences. By local interactions we mean that two particles 
interact only when they coincide in both space and time. In practice this 
means that at each time step all the particles first move one step to either 
the left or the right and then interact with whatever other particle may be 
occupying the same node of the lattice. At the next time step the particles 
resulting from these interactions move in the appropriate direction and the 
evolution continues. 

Let us consider, then, the configuration of particles shown in Fig. 1. 
The right-moving particle labeled 1 interacts with the left-moving particle 
labeled 2 at time t + 1, since they occupy the same node of the lattice; call 
the resulting particles 1' and 2'. At the next time step the right-moving par- 
ticle 1' and the left-moving particle 3 have bypassed each other, without 
interacting. The difference is, of course, that particles 1 and 2 started an 
even number of nodes apart and particle 3 an odd number of nodes from 
both. Since the separation (mod 2) of any two particles is preserved by the 
evolution, only those an even number of nodes apart can ever interact. 
Thus, if the underlying lattice is Z, the system really consists of two 
uncoupled gases, one lying on the even nodes, the other on the odd. (Were 
Ivl > 1, some other, but similar, partition would obtain.) This is the origin 

2' V 3' 

1 2 3 

t+2 

t+1 

Fig. 1. A configuration of particles in the original formulation of the lattice gas automaton. 
Note that particle 1 interacts with particle 2 but not with particle 3. 
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of what have been called spurious conservation laws in other lattice gas 
automata(4); it is clear that any function of the state of the even (odd) 
nodes which is conserved by the dynamics--particle number, say--is a 
conserved quantity which has no counterpart in the continuum limit. 

The usual reaction to the discovery of such spurious conservation laws 
is to attempt to modify the model to break them. While this is often not 
difficult to do, it is rarely easy to show that no extraneous conserved quan- 
tities remain after all the obvious modifications. It is also rarely clear what 
effect the more subtle spurious conserved quantities have on statistical 
properties of the lattice gas automaton. The existence of any precludes 
ergodicity afortiori, but experience with other finite configuration-space 
dynamical systems suggests that while this may be unavoidable, it does not 
necessarily prevent the development of desirable statistics such as a canoni- 
cal ensemble measure, u5,~6) 

Rather than breaking the spurious symmetry we have found in this 
model, however, we choose to use it to effect a radical transformation of 
the model. Since the lattice gas automaton over Z splits into two 
uncoupled gases, as it does over ZN when N is even, we can consider the 
uncoupled systems separately, as has been done for the Burgers' equation 
model of ref. 5 in ref. 17. That is, we consider a lattice gas automaton where 
the particles lie only on the even nodes, say. Rescaling the spacetime lattice 
by one-half and allowing the interactions to occur in the middle of the time 
steps, as shown in Fig. 2, we obtain a new model. A slightly different trans- 
formation applied to the lattice gas automaton over Z N when N is odd 
produces the same new model: since by traversing the entire space a 
particle moves from an even node to an odd one, we simply take the 
double cover of the lattice to be the rescaled lattice. See Fig. 3. 

Three typical spacetime diagrams of particle trajectories in the rescaled 
model are shown in Fig. 4. In each case they determine a tiling of spacetime 
by rectangles. The regularity of this spacetime configuration suggests a 

2'  i 1 �84 

2 i 1  

1 2 

i 

t +  ! 

Fig. 2. Rescaling the lattice gas automaton with particles on the even nodes only. 
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3 2 4 

5 10 

Fig. 3. For the lattice Z N when N is odd, taking the double cover gives the lattice for the 
rescaled model. 

further transformation of the model: Drawing a spacelike curve (one with 
tangent vector within re/4 of horizontal) which crosses the rectangles in an 
alternating sequence of left and right trajectories indicates that a simpler 
initial configuration (one with alternating left- and right-moving particles) 
would evolve identically in the first two cases shown. In the third case, 
because the lattice is periodic and there are different numbers of left- and 
right-moving particles, the spacelike curve is not Cauchy: it clearly cannot 
be used to determine an initial condition for the evolution. With the excep- 
tion of this case, however, the original model is equivalent to the rescaled 
model with alternating initial conditions. 

Now observe that the spacing between right (left)-moving particles is 
constant--the trajectories are parallel. Thus, if we store the spacings 

.S;i 'Wlii!!ii:::::ii:}::::i:i::i:: i 

',,i i 
i 

Fig. 4. Spacetime diagrams of particle trajectories in the rescaled models on Z and Zu. The 
spacelike curve in each of the diagrams crosses the trajectories in an alternating sequence of 
left- and right-moving particles. Since the second periodic diagram has different numbers of 
left- and right-moving particles, the spacelike curve is not Cauchy. 
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initially, they can be ignored throughout the evolution and restored at the 
end. But this means that we need only consider/t lattice which is saturated, 
i.e., we can conformally rescale the spacetime diagram so that all the 
rectangles are squares of side x/2 in rescaled lattice units and each node 
carries exactly one particle at each time step as shown in Fig. 5; there is 
now a complete exclusion principle: all the interactions occur between time 
steps and only one particle of any type lies on a given node at a particular 
time. This saturated, alternating, rescaled model is the one we shall be 
able to solve exactly. Inverting the transformations successively would 
reconstruct the original lattice gas automaton and reinterpret as properties 
of its evolution quantities derived from the solution. 

4. D Y N A M I C S  

Before solving this model we must complete its description; to this 
point we have not specified a dynamics, requiring only that it be local. 
Thus we must now determine the possible interaction rules for left- and 
right-moving A and .~ particles. These interactions must be P and CT 
invariant: CT implies that they be reversible~distinct configurations 
evolve to distinct configurations--and P implies that (a)symmetric con- 
figurations evolve to (a)symmetric configurations. 

A deterministic interaction rule, therefore, necessarily consists of a pair 
of 1-1 maps 

{AA, AA} --* ~AA, AA} 

{AA, AA ) --* {AA, AA } 

where the notation X Y  indicates a right (left)-moving X particle and a left 
(right)-moving Y particle before (after) the interaction. There are clearly 
four such rules, each of which satisfies P and CT invariance. 

More generally, and also as suggested by the reduction from 't Hooft's 
original model, we can consider probabilistic interaction rules. These are 
most conveniently represented by a scattering matrix: 

AA A~ ~A 3 3  

~A( p 0 0 1 -  t 
A~ 0 q I - -q  O p 

R : =  

~ I - p  0 0 
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which is really a fourth-order tensor with components R y z v / x  representing 
the probability of the W X ~  Y Z  interaction. The components have the 
form indicated because of the constraints we have imposed: 

R r z w x  >~ 0 

~, R Yz v/x = 1 
YZ 

W = X ,  Y C Z ~ R y z w x =  O 

R Y z w x  = - R z y x w  

R y z w x  = Rgv~F2 

(positive probability) 

(particle number conservation) 

(parity) 

(parity) 

(charge conjugation/time reversal) 

Note that the probabilistic rules are a generalization of the deter- 
ministic ones: letting p and q take the values 0 and 1 generates the four 
deterministic rules. Also note that for p ~ 1, although total particle number 
is conserved, the interaction rule does not conserve the two types of 
particles separately. 

5. E V O L U T I O N  OF THE LATTICE GAS 

The goal of analyzing any lattice gas is to understand its evolution, 
ultimately, to know its state at any time t given the initial state. For  a 
probabilistic lattice gas one can, of course, expect no more than a distribu- 
tion of final states. Considering the problem of computing this distribution 
will lead us directly to the equivalent statistical mechanics model. 

In Section 3 we transformed the original lattice gas into one which is 
saturated, alternating, and rescaled. As this system evolves, each node 
carries left- and right-moving particles at alternate time steps, as we can see 
in Fig. 5. Thus, given the parity of the initial condition, there is only one 
bit of state information--A or .4--per node. Denoting this bit by a . ( t ) ,  on 

Particle trajectories in the saturated, alternating, rescaled model. Fig. 5. 
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the Z N lattice the state of the system at time t is a(t) := (ax(t) ..... aN(t)), 
where au+~--aa  and N is even, since the model is alternating. There are, 
clearly,  2 N possible states. 

Let ( a ( i +  1) I a(i)5 denote the probability that a particular state a(i) 
evolves to another particular state a ( i+  1). (The notation is designed to 
recall the bra-ket notation of quantum mechanics as well as the notation 
for conditional probability.) This state-to-state transition probability is just 
the product of the local transition probabilities: when al(i) is right-moving, 
( a ( i +  1)1 a( i ) )  is given by 

N/2 
H Ryzwxb(W, a2. 1(i))6(X, a2n(i)) 

n--1 

• a2n ~(i+l))6(Z, a2n(i+l)) 

and when al(i) is left-moving, it is 

N/2 
H Ryzwxb(W,  ~ ~(X, a2n+ l ( i ) )  

n = l  

x 6(Y, a2,(i + 1)) 6(Z, a2,+~(i+ 1)) 

It is convenient to regard each of these expressions as the components of 
2N•  2 u matrices U + and U- ,  global evolution matrices analogous to the 
local transition matrix R.~2' 18,19) 

More compactly, let Wn denote a two-dimensional vector space at 
node n with basis labeled by A and A; the evolution matrices then act on 
the 2N-dimensional vector space W1 | ... | WN. If we define R,~, to act 
on this space as the identity except on Wm and W,, where it acts as the 
scattering operator R (in components 

('Rmn)a'a :=Rama',,am,r,, H ~a~aj 
j v~ m,n 

where the subscript a 'a  denotes that component of the 2Nx 2 u matrix 
Rmn), then 

U + :=RI2R34. . .RN_l .  N 

U :=R23Ras,..RN, 1 

Now, to compute the probability of the system evolving from a(0) to 
a(t), we must add the probability of each possible evolution path 

(a( t )  l a ( t - 1 ) ) ( a ( t - 1 ) F a ( t - 2 ) ) . . . ( a ( 1 )  cr(0)) 
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That is, 

t 1 

(a(t) la(O))= ~ ... ~ I~ (a( i+l) la( i ) )  (1) 
o-(1) a ( / - -  1) i = 0  

This should be seen as analogous to a path integral in quantum field 
theory, although here our system is discrete and we are computing real 
probabilities rather than complex quantum amplitudes. Writing 

( a ( i +  1)l a(i)) =: e x p [ - E ( a ( i  + 1), G(i))/kT] 

for some (formal) scalar kT makes the analogy clearer, for then 

(cr(t) I ~r(0)) = ~ --- ~ exp - ~--~ E(a(i+ 1), a(i)) (2) 
~(1) o ' ( t -  1) = 

which is essentially the sum over paths/histories of the action of a 
path/history. 

Since (a(i+ 1) I a ( i ) )  is also a product, this suggests rewriting its fac- 
tor R as an exponential, too. Writing Ryzwx as e x p [ - E ( W ,  X, Y, Z)/kT] 
means that E(~r(i+ 1), a(i)) is the sum 

N/2 

E(a2,_l(i), a2n(i), ~2,_1(i+ 1)i ~r2,(i+ 1)) 
n = l  

o r  

N/2 

E(a2n(i), crzn+ ,(i), a2~(i + 1), a2,+1(i+ 1)) 
n = l  

according to whether ~rl(i ) is right- or left-moving. Inserting these expres- 
sions into the exponent in (2), we find that it becomes 

1 
kT  intera~ctions E(interaction) 

where the interactions are those shown in Fig. 5. Thus, (2) is exactly the 
partition function for a statistical mechanics model on the particle trajectory 
lattice with states being assignments of A or A to each edge, Boltzmann 
weights at each vertex defined by exp[ -E( in te rac t ion) /kT]  and boundary 
conditions of ~(0) and ~(t). 
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6. SOLVING THE M O D E L  

Having made this identification between the lattice gas automaton and 
this statistical mechanics model, we recognize U § and U -  as the diagonal- 
to-diagonal transfer matrices used in the exact solution of such statistical 
mechanics models, u2) The sums and products in the expression in (1) for 
the path integral/partition function are no more than the product of these 
transfer matrices: 

( a ( t )  l ~ ( 0 ) ) = ( U  U + . . . U - U + M n ~ ( o i  

(assuming the initial state has a right-moving particle at node 1 ), where the 
subscript a ( t )~(0)  again denotes that component of the 2Nx 2 N mati:ix 
obtained by taking the product of the U's. It would be easy to evaluate this 
product analytically if the matrices could be diagonalized. Failing this, the 
less specific problem of evaluating the trace of the matrix on the right-hand 
side of the equation (i.e., evaluating the partition function for the statistical 
mechanics model on a torus) in the limit as t ~  ~ requires only the 
knowledge of the largest eigenvalue of U : =  U U +. Since commuting 
matrices have the same eigenvalues and a common set of eigenvectors, one 
is motivated to search for matrices which commute with the transfer 
matrices. 

Following Destri and de Vega, (18) begin by defining the one-step trans- 
lation operator on the spatial lattice, 

V : =  P 1 2 P 3 4  - - �9 PN- I,N 

where Pmn is the permutation operator, which is given by Rmn when p = 1 
and q =  0. Just as do U -+, V acts on W~ | --- | W N ;  in fact, the evolution 
operators differ by conjugation with V: 

U + - = V U ~ V  -1  

which implies that V z commutes with the evolution: 

[ u  -+, v 2 ] = 0 =  [u, v 2] 

This is not surprising, since a shift by an even number of lattice points is 
a symmetry of the model. 

What other operators on W1 | ... | Wu might commute with U +? 
The simplest possibility is a tensor product of N operators, each acting on 
one of the IV,. Less trivially, consider 2 x 2 matrices of operators, L +, 
which act at node n when it carries a right (left)-moving particle. Then the 
matrix products 

z +- : = L [ L ~  + -v �9 . . L ~  1LN  
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Fig. 6. 

u i i i i i i 

u- ! i i i = 

The rnonodromy operators r* and r -  act before and after the row of interactions 
U +, respectively. 

known in the quan tum inverse scattering method as monodromy matrices, 
are 2 • 2 matrices of operators  on W1 | . . .  @ WN. Since 

~+ = Vz ~ V 

the traces of the m o n o d r o m y  matrices are the same operator,  T (the row- 
to-row transfer matrix), acting on W1 | . . .  | WN. If we take L~ + to act on  
Wo | Wn, where Wo is an auxiliary two-dimensional  vector space, r + and 
rT act before and after a row of interactions, namely U +, as shown in 
Fig. 6. The result is the same, i.e., 

U_+ + v U_+ 

which implies [ U  -+, T]  = 0 ,  provided the action of a pair of L's commutes  
with that  of a single R, as shown in Fig. 7. This is known as the s ta r -  
triangle or Yang-Baxter  condit ion:  

L + t n + l R n ,  n+ l = gn,n+ l t  n t + + l  (3) 

Should there exist a nontrivial class of solutions to this equation, there 
whould  be the desired collection of transfer matrices T commut ing  with 
U--. 

At this point  we note that  the scattering matrix R is a special case of 
the Bol tzmann weight of the zero-field symmetric eight-vertex model:  

W : =  

AA AA AA AA AA(aO0 ) 
A~ 0 C b 

gA 0 b c 

2A d 0 0 

L* 

/ L  + \ L -  

Fig. 7. Graphical representation of the star-triangle or Yang-Baxter equation. 
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This more general model has been solved by Baxter(12): the result is that 
the Yang-Baxter equation is satisfied by any three operators having the 
same form as W with equal values of the two parameters 

a2 + b2 _ cZ _ d 2 

2(ab + cd) 

ab - cd F : =  
ab + cd 

There is thus one degree of freedom in the solution to (3) beyond a trivial 
normalization factor, and hence there is a one-parameter family of 
mutually commuting transfer matrices as desired. This means our model is 
solvable; its computable properties and their implications will be discussed 
in the final section. 

7. D I S C U S S I O N  

For  a symmetric eight-vertex model with Boltzmann weight R, the 
parameter A is given by 

p 2 + ( 1  - q ) Z - q 2 - ( 1 - p ) 2  p - q  
A =  

2 [ p ( 1 - q ) + q ( 1 - p ) ]  p + q - 2 p q  

It is easy to check that ]A] ~< 1 for 0~<p, q~< 1. Now, when ]A] < 1 the sym- 
metric eight-vertex model is in its disordered regime: one can show that 
there is no spontaneous magnetization or polarization. Further, when 
a + d =  b + c, as in this case where the parameters are probabilities, the 
correlation length vanishes: the system is at a point of complete disorder. 
Specialization to the case when d =  0 defines the six-vertex model. Simple 
transformations from any of the cases p or q equals one or zero (as with 
a deterministic rule) place us in this situation. In each of these cases A = 1 
and the model lies on a first-order critical line between disordered and 
totally ordered regimes of the six-vertex model. This is a familiar result for 
probabilistic cellular automata, (1~176 although we have arrived at it by a 
slightly different route than is usually followed; the correlation function for 
this situation has been calculated in ref. 22. 

There are several observations to be made. These results apply to 
ensembles of systems, in the thermodynamic limit. That the correlation 
length vanishes, for example, does not mean that there is no correlation 
between states of the probabilistic lattice gas automaton at successive time 
steps. Nor  would a nonvanishing correlation length mean that there were 
necessarily spacelike correlations in a given initial state. Instead, the inter- 
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pretation is that deep in the interior of a system, far from the boundary 
conditions and thus/or subject to essentially random boundary conditions, 
a domain of sufficiently large size is in thermodynamic equilibrium. Of 
course, unless the domain is infinite, i.e., the thermodynamic limit results 
apply strictly, finite-size effects will modify the results--the correlation 
length will not vanish exactly, say, but only be very small/TM Since these 
results are obtained for specific regimes of the full symmetric eight-vertex 
model, they can be thought of as shadows of quantum mechanical behavior 
in the probabilistic or even deterministic model, which are visible in the 
ensemble limit. A major open question is to understand the relation 
between the quantum Hamiltonian which can be constructed from the 
transfer matrix in these models (12'19'24) and the classical equations of 
motion which are supposed to be approximated in the macroscopic limit; 
our results only provide evidence for the validity of the first step in the 
derivation of the latter--the assumption of local thermodynamic equi- 
librium. While it seems clear that two-dimensional thermodynamic equi- 
librium should be impossible without thermodynamic equilibrium in any 
one-dimensional subspace, this also remains to be proved. 

Note that although thermodynamic equilibrium obtains, the original 
model is explicitly n0nergodic~-recall the split into two uncoupled (even 
and odd) systems. Our success in analyzing the model this way suggests 
that this approach may be appropriate for other lattice gas models: Rather 
than trying to break spurious conservation laws in a discrete dynamical 
system, provided that the conserved quantity does not have a continuum 
limit, perhaps one should use it to partition the model and then concen- 
trate on the components separately. (17) In general, this model demonstrates 
again the efficacy of constructing and analyzing lattice gas automata 
according to (spacetime) symmetry principles; we expect that this approach 
should prove complementary to other approaches, such as Markov 
processes, ~15) for obtaining thermodynamic results for more realistic lattice 
gas models for fluid flow. 
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